Rayleigh quotient and left eigenvalues of quaternionic matrices

نویسندگان

چکیده

We study the Rayleigh quotient of a Hermitian matrix with quaternionic coefficients and prove its main properties. As an application, we give some relationships between left right eigenvalues symplectic matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Eigenvalues of a Rayleigh Quotient Matrix

This note deals with the following problem: Let A be an n X n Hermitian matrix, and Q and 0 be two n X rn (n > m > 1) matrices both with orthonormal column vectors. How do the eigenvalues of the m X m Hermitian matrix Q”AQ differ from those of the m X m Hermitian matrix QHAQ? We give a positive answer to one of the unsolved problems raised recently by Sun. In what follows, we will consider the ...

متن کامل

Localization theorems for eigenvalues of quaternionic matrices

Ostrowski type and Brauer type theorems are derived for the left eigenvalues of quaternionic matrix. We see that the above theorems for the left eigenvalues are also true for the case of right eigenvalues, when the diagonals of quaternionic matrix are real. Some distribution theorems are given in terms of ovals of Cassini that are sharper than the Ostrowski type theorems, respectively, for the ...

متن کامل

Random right eigenvalues of Gaussian quaternionic matrices

We consider a random matrix whose entries are independent Gaussian variables taking values in the field of quaternions with variance 1/n. Using logarithmic potential theory, we prove the almost sure convergence, as the dimension n goes to infinity, of the empirical distribution of the right eigenvalues towards some measure supported on the unit ball of the quaternions field. Some comments on mo...

متن کامل

Rayleigh Quotient Iteration for Nonsymmetric Matrices

Rayleigh quotient iteration is an iterative algorithm for the calculation of approximate eigenvectors of a matrix. Given a matrix, the algorithm supplies a function whose iteration of an initial vector, vQ , produces a sequence of vectors, vn . If the matrix is symmetric, then for almost any choice of v0 the sequence will converge to an eigenvector at an eventually cubic rate. In this paper we ...

متن کامل

Right Eigenvalues for Quaternionic Matrices: a Topological Approach

We apply the Lefschetz Fixed Point Theorem to show that every square matrix over the quaternions has right eigenvalues. We classify them and discuss some of their properties such as an analogue of Jordan canonical form and diagonalization of elements of the compact symplectic group Sp(n).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear & Multilinear Algebra

سال: 2022

ISSN: ['0308-1087', '1026-7573', '1563-5139']

DOI: https://doi.org/10.1080/03081087.2022.2094862